If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-31x+33=0
a = 6; b = -31; c = +33;
Δ = b2-4ac
Δ = -312-4·6·33
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-13}{2*6}=\frac{18}{12} =1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+13}{2*6}=\frac{44}{12} =3+2/3 $
| 3=n+4= | | 10=√x+4 | | |2u+4|=10 | | -33+8x=-3(3x+6)+2 | | 2x-3=7x-3+2 | | 20(33-5)=20(t) | | 20-5x-8=2x-x | | 4x+1/8(8x+6)=2(4x+3) | | 5(2=n)=3(n=6) | | 8x+3=8x-27 | | 7k^2+20k=3 | | 230x=1,000+35x | | -6r-7=9r+8 | | 2k^2+20k=3 | | X=77.65+(x-39.15/2) | | 8(x-4)=6x-38 | | 11x+7+12x-1=180 | | -5x+55=5x+65 | | t^2-10t=-21 | | p+17=19 | | -3÷2(x+4)-3=7 | | -4x=1454 | | -3=5a-12 | | -1/3m=1+-7 | | 9.8q+16.83=19.4q−6.97−11q | | 2y-3(2y-3)=2=31 | | 1.25(x-8)=x-16 | | 360=x(x-3)+(x+8)+(x-3) | | x-5-8=-1 | | -(6h+7)+8=-29 | | 50x=40(x+10) | | -216=6(4n-8) |